Even factors, jump systems, and discrete convexity

نویسندگان

  • Yusuke Kobayashi
  • Kenjiro Takazawa
چکیده

A jump system, which is a set of integer lattice points with an exchange property, is an extended concept of a matroid. Some combinatorial structures such as the degree sequences of the matchings in an undirected graph are known to form a jump system. On the other hand, the maximum even factor problem is a generalization of the maximum matching problem into digraphs. When the given digraph has a certain property called oddcycle-symmetry, this problem is polynomially solvable. The main result of this paper is that the degree sequences of all even factors in a digraph form a jump system if and only if the digraph is odd-cycle-symmetric. Furthermore, as a generalization, we show that the weighted even factors induce M-convex (M-concave) functions on jump systems. These results suggest that even factors are a natural generalization of matchings and the assumption of odd-cycle-symmetry of digraphs is essential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints

We develop a simple routine unifying the analysis of several important recently-developed stochastic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA). First, we show an intrinsic connection between stochastic optimization methods and dynamic jump systems, and propose a general jump system model for stochastic optimization methods. Our proposed model reco...

متن کامل

The convexity of induced paths of order three

In this paper, we introduce a new convexity on graphs similar to the well known P3convexity [3], which we will call P ∗ 3 -convexity. We show that several P ∗ 3 -convexity parameters (hull number, convexity number, Carathéodory number, Radon number, interval number and percolation time) are NP-hard even on bipartite graphs. We show a strong relation between this convexity and the well known geo...

متن کامل

Properties of Option Prices in a Jump Diffusion Model

We study convexity and monotonicity properties of option prices in a jump-diffusion model using the fact that these prices satisfy certain parabolic integro-differential equations. Conditions are provided under which preservation of convexity holds, i.e. under which the value, calculated under a chosen martingale measure, of an option with a convex contract function is convex as a function of t...

متن کامل

Continuous Time Particle Filtering

We present the continuous-time particle filter (CTPF) – an extension of the discrete-time particle filter for monitoring continuous-time dynamic systems. Our methods apply to hybrid systems containing both discrete and continuous variables. The dynamics of the discrete state system are governed by a Markov jump process. Observations of the discrete process are intermittent and irregular. Whenev...

متن کامل

Time-Varying Modeling of Systematic Risk: using High-Frequency Characterization of Tehran Stock Exchange

We decompose time-varying beta for stock into beta for continuous systematic risk and beta for discontinuous systematic risk. Brownian motion is assumed as nature of price movements in our modeling. Our empirical research is based on high-frequency data for stocks from Tehran Stock Exchange. Our market portfolio experiences 136 days out of 243 trading days with jumps which is a considerable rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2009